首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2136篇
  免费   133篇
  国内免费   562篇
化学   2530篇
晶体学   51篇
力学   46篇
综合类   20篇
数学   6篇
物理学   178篇
  2023年   30篇
  2022年   36篇
  2021年   79篇
  2020年   67篇
  2019年   71篇
  2018年   56篇
  2017年   79篇
  2016年   110篇
  2015年   88篇
  2014年   104篇
  2013年   220篇
  2012年   129篇
  2011年   110篇
  2010年   123篇
  2009年   119篇
  2008年   124篇
  2007年   129篇
  2006年   113篇
  2005年   114篇
  2004年   108篇
  2003年   111篇
  2002年   95篇
  2001年   75篇
  2000年   67篇
  1999年   48篇
  1998年   48篇
  1997年   40篇
  1996年   46篇
  1995年   36篇
  1994年   46篇
  1993年   38篇
  1992年   41篇
  1991年   28篇
  1990年   15篇
  1989年   27篇
  1988年   15篇
  1987年   12篇
  1986年   7篇
  1985年   5篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1980年   2篇
  1979年   3篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1959年   1篇
排序方式: 共有2831条查询结果,搜索用时 15 毫秒
1.
This research demonstrates, a facile approach to fabricate the nano ZnO system in an unique combination of surfactant-polyol-assembly (SPA) acting as a caging agent restricting the ZnO crystallite size in nano-regime. This SPA is suitable for health and hygiene products and such optimized technique is among the very few researches exploring the impact of embedding low concentrations of nano ZnO system into the matrix of sodium salt of long chain fatty acids (soap bar) and liquid cleansing personal care products. The fabricated nano ZnO in SPA and infused products were systematically characterized using various advanced and appropriate techniques. The hexagonal wurtzite structure of nano ZnO-SPA is evaluated based on XRD pattern which also exhibit an average crystallite size as 20.18 nm and high specific surface area as 52.99 m2/g. The SEM-supported morphological assessment confirms the formation of agglomerates of ultrafine ZnO rods and spherical particles. Novel nano ZnO having wideband gap energy (3.66 eV) embedded in soap bar act as a UV-blocker preventing the oxidation of unsaturated long chain fatty acids. Soap bar without ZnO experienced degradation and reduction in whiteness to 17.85% whereas 2.5 mg/g nano ZnO infused soap shows the reduction to 7.9% which clearly reflects the increased photostability of soap bar. The antibacterial efficacy of nano ZnO-SPA and infused products are investigated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) by Zone of Inhibition (ZOI) and European standard EN:1276. Infused products exhibited high antibacterial efficacy up to 4.43 log reduction equivalent to >99.99% germ kill.  相似文献   
2.
The coordination chemistry of f-block elements (lanthanide and actinide) in molten salts has become a resounding topic in view of its great importance to the research and development (R&D) of molten salt reactors and pyroprocessing. In this Review article, a general overview of the coordination chemistry of f-block elements in molten salts is provided including past achievements and recent advances. Particular emphases are placed on the oxidation state, speciation, and solution structure of f-block metal ions in molten salts, as well as their relationships with the salt composition. Furthermore, this review briefly discusses the spectroscopic and theoretical methods that complement each other in revealing the coordination properties.  相似文献   
3.
Grignard reagents RMgCl and their so‐called turbo variant, the highly reactive RMgCl?LiCl, are of exceptional synthetic utility. Nevertheless, it is still not fully understood which species these compounds form in solution and, in particular, in which way LiCl exerts its reactivity‐enhancing effect. A combination of electrospray‐ionization mass spectrometry, electrical conductivity measurements, NMR spectroscopy (including diffusion‐ordered spectroscopy), and quantum chemical calculations is used to analyze solutions of RMgCl (R=Me, Et, Bu, Hex, Oct, Dec, iPr, tBu, Ph) in tetrahydrofuran and other ethereal solvents in the absence and presence of stoichiometric amounts of LiCl. In tetrahydrofuran, RMgCl forms mononuclear species, which are converted into trinuclear anions as a result of the concentration increase experienced during the electrospray process. These trinuclear anions are theoretically predicted to adopt open cubic geometries, which remarkably resemble structural motifs previously found in the solid state. The molecular constituents of RMgCl and RMgCl?LiCl are interrelated via Schlenk equilibria and fast intermolecular exchange processes. A small portion of the Grignard reagent also forms anionic ate complexes in solution. The abundance of these more electron‐rich and hence supposedly more nucleophilic ate complexes strongly increases upon the addition of LiCl, thus rationalizing its beneficial effect on the reactivity of Grignard reagents.  相似文献   
4.
Various aryl‐, alkenyl‐, and/or alkyllithium species reacted smoothly with aryl and/or benzyl ethers with cleavage of the inert C?O bond to afford cross‐coupled products, catalyzed by commercially available [Ni(cod)2] (cod=1,5‐cyclooctadiene) catalysts with N‐heterocyclic carbene (NHC) ligands. Furthermore, the coupling reaction between the aryllithium compounds and aryl ammonium salts proceeded under mild conditions with C?N bond cleavage in the presence of a [Pd(PPh3)2Cl2] catalyst. These methods enable selective sequential functionalizations of arenes having both C?N and C?O bonds in one pot.  相似文献   
5.
In the presence of the inexpensive and non‐toxic polymethylhydrosiloxane, the combination of copper(II) acetate and a chiral diphosphine displayed high catalytic efficiency in the asymmetric hydrosilylation of a series of aromatic ketones in air atmosphere and at room temperature. (R)‐1‐Arylethanols were obtained with up to 99% yield and 93% enantiomeric excess. Meanwhile, the electron effect and steric hindrance of substituents on the aromatic ring had an interesting influence on both the yields and enantioselectivities. Furthermore, a possible mechanism was presented to explain the influence of some key factors on the reaction.  相似文献   
6.
Since few examples of 10,11‐didehydrogenated (3‐ethynyl) cinchona alkaloids have been utilized as organocatalysts in asymmetric reaction, we synthesized 10,11‐didehydrogenated cinchonidine. The 3‐vinyl group of cinchonidine was transformed into a 3‐ethynyl functionality. Based on the resulting 10,11‐didehydrogenated cinchonidine, the corresponding quaternary ammonium salt and its dimers were prepared. The ion‐exchange reaction between the quaternary ammonium salt and sodium sulfonate produced the quaternary ammonium sulfonate as a stable ionic compound. Chiral ionic polymers were then synthesized by the ion‐exchange polymerization of the 10,11‐didehydrogenated cinchonidinium salt dimer and a disulfonate. The chiral ionic polymers were found to be capable of efficiently catalyzing the asymmetric alkylation of N‐(diphenylmethylene)glycine tert‐butyl ester. The enantioselectivities obtained with the polymeric catalysts were higher than those obtained with the corresponding monomeric catalyst. Dimers of 10,11‐didehydrogenated cinchonidinium salts were prepared. Treatment of the dimer with disodium disulfonate gave the chiral ionic polymers, which showed high catalytic activity in asymmetric benzylation of N‐(diphenylmethylen)glycine tert‐butyl ester. The polymeric catalysts were reused several times without the loss of catalytic activity. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 621–627  相似文献   
7.
A series of Mn(II) aminophosphonate complexes were successfully synthesized and intercalated into the hydroxy double salt [Zn5(OH)8]Cl2·yH2O. Complex incorporation led to an increase in the interlayer spacing from 7.8 to 10–12 Å. Infrared spectroscopy showed the presence of the characteristic vibration peaks of the Mn(II) complexes in the intercalates' spectra, indicating successful incorporation. The complex-loaded composites had somewhat lower proton relaxivities than the pure complexes. Nevertheless, these intercalates may have use as MRI contrast agents for patients with poor kidney function, where traditional Gd(III)-based contrast agents cause severe renal failure.  相似文献   
8.
Covalent functionalization of 2D materials provides a tailored approach towards tuning of their chemical, optical, and electronic properties making the search for new ways to graft small molecules important. Herein, the reaction with (3,5-bis(trifluoromethyl)phenyl)iodonium salt is revealed as an effective strategy for functionalization of MoTe2 thin films. Upon decomposition of the salt, the generated radicals graft covalently as aryl-(CF3)2 groups at the surface of both metallic (1T’) and semiconducting (2H) polymorphs of MoTe2. Remarkably, the reactivity of the salt is governed by the electronic structure of the given polymorph. While the functionalization of the metallic MoTe2 occurs spontaneously, the semiconducting MoTe2 requires activation by light. The reaction proceeds with the elimination of oxide from the original films yielding the functionalized products that remain protected in ambient conditions, presenting a viable solution to the ageing of MoTe2 in air.  相似文献   
9.
Covalent organic frameworks (COFs) are an extensively studied class of porous materials, which distinguish themselves from other porous polymers in their crystallinity and high degree of modularity, enabling a wide range of applications. COFs are most commonly synthesized solvothermally, which is often a time-consuming process and restricted to well-soluble precursor molecules. Synthesis of polyimide-linked COFs (PI-COFs) is further complicated by the poor reversibility of the ring-closing reaction under solvothermal conditions. Herein, we report the ionothermal synthesis of crystalline and porous PI-COFs in zinc chloride and eutectic salt mixtures. This synthesis does not require soluble precursors and the reaction time is significantly reduced as compared to standard solvothermal synthesis methods. In addition to applying the synthesis to previously reported imide COFs, a new perylene-based COF was also synthesized, which could not be obtained by the classical solvothermal route. In situ high-temperature XRPD analysis hints to the formation of precursor–salt adducts as crystalline intermediates, which then react with each other to form the COF.  相似文献   
10.
Zeise's salt, [PtCl3(H2C=CH2)], is the oldest known organometallic complex, featuring ethylene strongly bound to a platinum salt. Many derivatives are known, but none involving dinitrogen, and indeed dinitrogen complexes are unknown for both platinum and palladium. Electrospray ionization mass spectrometry of K2[PtCl4] solutions generate strong ions corresponding to [PtCl3(N2)], the identity of which was confirmed through ion-mobility spectrometry and MS/MS experiments that proved it to be distinct from its isobaric counterparts [PtCl3(C2H4)] and [PtCl3(CO)]. Computational analysis established a gas-phase platinum–dinitrogen bond strength of 116 kJ mol−1, substantially weaker than the ethylene and carbon monoxide analogues but stronger than for polar solvents such as water, methanol and dimethylformamide, and strong enough that the calculated N−N bond length of 1.119 Å represents weakening to a degree typical of isolated dinitrogen complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号